- [7] R. Pummerer & E. Prell, Ber. deutsch. chem. Ges. 55, 3105 (1922); R. Pummerer & G. Huppmann, ibid. 60, 1442 (1927); R. Pummerer, M. Dally & S. Reissinger, ibid. 66, 792 (1933).
- [8] E. Browning & R.Adams, J. Amer. chem. Soc. 52, 4098 (1930); P. R. Shildneck & R. Adams, ibid. 53, 343 (1931).
- [9] B. W. Birrell, R. Buchan & O. C. Musgrave, Chem. Commun. 1969, 1341.
- [10] H. Musso, U.v. Gizycki, U. I. Záhorszky & D. Bormann, Liebigs Ann. Chem. 676, 10 (1964).
- [11] H. Musso & S.v. Grunelius, Chem. Ber. 92, 3101 (1959).
- [12] W.F. Baitinger, P.v. R. Schleyer & K. Mislow, J. Amer. chem. Soc. 87, 3168 (1965).
- [13] M.C. Kloetzel, R. P. Dayton & B. Y. Abadir, J. org. Chemistry 20, 38 (1955).
- [14] K. Brunner, Mh. Chem. 34, 913 (1913).

100. Vibrations de valence C-H dans les hydrocarbures et les halogénures de butyle

par M. Avanessoff et T. Gäumann

Institut de Chimie-Physique, Ecole Polytechnique Fédérale, Lausanne

(8 III 71)

Summary. The valence vibrations C—H and C—D of a number of alkanes and of $(CH_3)_3CX$ are studied using compounds deuterated in specific positions. For the methyl and the methylene groups an experimental model of group frequencies is proposed, which allows some general conclusions to be drawn concerning the assignation of the frequencies. The methyl group always shows a *Fermi* resonance between v_s and $2\delta_{as}$ in the region of 2930–2870 cm⁻¹. In consequence the unperturbed v_sCH_3 frequency may be situated at ~2915 cm⁻¹ and the absence of a coupling with other groups can be checked. The vibrations of the methylene group adjacent to a methyl group have higher frequencies than those of CH_2 groups further removed. The coupling of the methylene groups, the coupling is the larger the longer the chain; being relatively small for symmetrical modes (~3 cm⁻¹), its value can be as large as 15 cm⁻¹ for the antisymmetric mode. A correlation is found between protonated and deuterated groups which leads to isotope effects comparing well with recorded values.

1. Introduction. – Si l'étude des spectres infrarouges des hydrocarbures est déjà ancienne [1], une solution globale pour leur interprétation n'a été donnée qu'assez récemment par *Snyder* et coll. [2]. Dans les faits, on constate deux approches différentes au problème de la vibration: les fréquences normales et les fréquences de groupes.

Ceci correspond à deux conceptions différentes de l'analyse des vibrations, qui se complètent et qui sont basées l'une sur le mode normal de vibration, et l'autre, sur le mode local (lié au groupe). Si seule la première approche permet une étude complète des vibrations d'une molécule, elle est toutefois d'un intérêt pratique limité en raison de la particularité de chaque problème, de la complexité de sa solution malgré l'utilisation de techniques de calcul modernes, et du fait de l'impossibilité de tenir compte de la présence de bandes harmoniques et combinaisons et des perturbations que ces bandes entraînent. De plus l'utilisation de cette première approche est basée sur une connaissance à priori d'un champ de force et consiste le plus souvent à ajuster aux fréquences expérimentales les valeurs des fréquences calculées à l'aide de ce champ de force (ou, ce qui revient au même, à ajuster aux données expérimentales un champ de force).

Dans l'ensemble cette méthode donne de bons résultats, en permettant de nombreuses interprétations qui cependant sont tributaires du champ initial. D'où de graves divergences dans les attributions de certaines vibrations, en particulier pour les vibrations de valence C-H, très souvent perturbées par des résonances. La seconde conception ne permet, quant à elle, que des analyses très fragmentaires, mais elle a l'avantage de la transférabilité et de la simplicité.

Le présent travail a pour but de proposer un modèle de groupe pour les fréquences des vibrations de valence des groupes CH_2 et CH_3 . En particulier, ce modèle permet de vérifier les attributions des vibrations de valence généralement admises pour les groupes CH_2 et CH_3 , et d'en proposer de nouvelles; de comparer aux fréquences normales de la littérature les fréquences de groupes, et donc de voir dans quelle mesure ces fréquences sont mieux adaptées à la description de ces vibrations. Il met surtout en évidence des perturbations qui modifient profondément le spectre du groupe méthyle en produisant quatre bandes au lieu des trois prévues. Enfin, il permet d'évaluer ces perturbations et les couplages, tant à l'intérieur d'un groupe qu'entre groupes voisins, et d'étudier les effets isotopiques.

2. Partie expérimentale et résultats numériques. – Les spectres étudiés sont ceux de la série des *n*-alcanes du butane à l'undécane (cf. tableau 1), de quelques alcanes ramifiés permettant plus particulièrement l'étude du groupe méthyle, comme les néopentane, méthyl-2-pentane, méthyl-3-pentane, diméthyl-2, 3-butane et diméthyl-2, 4-pentane (cf. tableau 2). Pour compléter l'étude du groupe méthyle, une série d'halogénures de *t*-butyle est étudiée, soit les iodure, bromure et chlorure de *t*-butyle et le bromure-D₆-1,3 (cf. tableau 3). Enfin de nombreux spectres d'échantillons marqués au deutérium ont été relevés, aussi bien pour l'étude des groupes CH_2 , CH_3 que pour celle des groupes CD_2 , CD_3 . Le tableau 4 regroupe les résultats des mesures concernant les hexanes deutériés dans les positions suivantes: D_6 -1,6, D_2 -1,6, D_1 -1, D_4 -2,5, D_2 -2, D_1 -2, D_4 -3,4, D_2 -3, D_1 -3, D_{10} -1,3,4,6, $D_{12}(H_2-2,5)$, D_{14} , D_7 -1,2,3, D_5 -1,3 et D_4 -2,4. Le tableau 5 concerne la série de *n*-alcanes D_6 -1,6 wavee 5,7,8 et 10 atomes de C.

Les spectres ont été enregistrés sur un spectromètre *Perkin-Elmer* 521. Les fréquences ont été mesurées à l'aide d'une courbe d'étalonnage [3]. Sauf indication contraire, toutes les mesures ont été effectuées sur des solutions de 2 à 20% (v/v) dans CCl_4 , avec des cellules de 30, 60 ou 80 μ m d'épaisseur. Les mesures effectuées en phase liquide pure rapportées dans les tableaux concernent des bandes trop faibles pour être mesurées en solution. Les spectres des solides à basse température ont été relevés à l'aide d'une cellule permettant de condenser une couche mince sur une fenêtre en AgCl. Cette fenêtre est maintenue à une température constante d'environ -160° , mesurée par un thermocouple dans la fenêtre. Si ces spectres correspondent pour la plupart bien à des solides cristallisés, certains cependant correspondent à des solides amorphes, en particulier ceux des hydrocarbures à bas points de fusion.

3. Attribution des bandes aux vibrations de valence des groupes CH_2 et CH_3 . – 3.1. Le modèle de groupe de CH_2 prévoit 2 vibrations de valence: v_a à 2926 \pm 10 cm⁻¹ ct v_s à 2853 \pm 10 cm⁻¹ [4]. Les spectres de la série des *n*-alcanes (cf. tableau 1) montrent en effet un net renforcement des bandes à 2928 cm⁻¹ et à 2857 cm⁻¹, avec l'allongement de la chaîne. La confirmation est apportée par la série des *n*-alcanes D_6 -1, ω (cf. tableau 5) qui montre deux bandes vers 2926 et 2860 cm⁻¹.

On admet généralement que le groupe CH_3 donne lieu à 2 bandes: ν_{as} à 2962 \pm 10 cm⁻¹ et ν_s à 2872 \pm 10 cm⁻¹ [4]. En fait le modèle de groupe de CH_3 prévoit 3 vibrations de valence, dont une est doublement dégénérée si le groupe possède la symétrie C_{3v} : $\nu_{as}(E)$ et $\nu_s(A_1)$. Lorsque le groupe CH_3 a la symétrie C_s (c'est-à-dire

quand il appartient à une molécule qui ne lui conserve pas l'axe d'ordre 3), on observe 3 vibrations: $\nu_s'(A')$, $\nu_a(A'')$ et $\nu_s(A')$ [5]. Cependant, certains auteurs [5] [6] mettent l'attribution de ν_s en doute, et de fait un grand nombre d'autres auteurs, sans poser ce problème, proposent des attributions différentes [7]–[13].

butane			pentane		
solide	solution	attributions	solide	solution	attributions
2957 s, b ª)	2962 s, b ^a)	v_{s}' et v_{a} CH ₃	2962 s ^a)	2061 ca)	a 'et a CH
2933 Sh	2935 m,b	ν _s CH ₃ ^b)	2956 s ∫	2901 3-7	$v_{\rm s} c v_{\rm a} c m_3$
2927 m,b	~2927 Sh	$\nu_a CH_2$	2933 m 👌	2030 c	n CH b) n CH
2873 m	2875 m	$2\delta_{as} CH_{3} b$	2912 s,b ∫	2930 3	$\nu_{\rm s}$ cm ₃ γ , $\nu_{\rm a}$ cm ₂
2860 w	2865 m	$\nu_{s} CH_{2}$	2874 m	2874 m	$2\delta_{as} \operatorname{CH}_{3}{}^{\mathbf{b}}$
2828 vw		comb.	2854 m	2863 m	$v_{\rm s} CH_2$
2808 vw		comb.	2730 w	2734 °) w	$2\delta_{s}CH_{3}$
2751 vw		comb.			
2726 w	2731 vw	2∂ _s CH ₃	heptane	`	
hexane			2961 s 2054 s	2960 s	v_s' et v_s CH ₃
			2934 3	J	3 4 9
2963 8	2960 s	v_{s}' et v_{s} CH ₃	2930 w Sn	2929 s	$v_{s} CH_{3}^{b}$), $v_{2} CH_{2}$
2855 s j		5 a 5	2920 8,0	J	
2930 Sh	2930 s	$\nu_{\rm s} {\rm CH}_3{}^{\rm b}$), $\nu_{\rm a} {\rm CH}_2$	2897 Sn 2871 m	2974	28 CIL b)
2918 S, D J		s that	2871 m	2874 m	20_{as} CH ₃ $^{\circ}$
2697 Sn 2871 m	2875 110	28 CH b)	2850 s	2859 s	$\nu_{s} CH_{2}$
2871 m 2853 m	2875 m 2861 m	20_{as} CH	$\sim 2731 \text{ mm}$	2733 c) 101	28 CH
2000 m 2726 vw	2734 °) w	$2\delta_{\rm s} CH_{\rm s}$	-2.51 00	2100 / W	20 ₈ 0113
octane			nonane		
2964 s 👌	2060 г	a 'et a CH	2961 s	2960 m	u 'et u CH
2954 s ∫	29003	$v_{\rm s} c v_{\rm a} c m_3$	2953 s	2500 m	vs ct va chi3
2918 s, b	2929 s	$v_{s}^{}$ CH $_{3}^{}$ b), $v_{a}^{}$ CH $_{2}^{}$	2919 s, b	2928 s,b	$\nu_{\rm s}$ CH ₃ ^b), $\nu_{\rm a}$ CH ₂
2899 3n 2871 m	2875 m	2δ CH- ^b)	$\sim 2893 w 3n$ 2871 m	2874 m	2δ CH, b)
2852 s	2858 s	$v_{as} CH_{2}$	2855 s		_oas or g /
~2726 vw	2732°) w	$2\delta_{s}CH_{s}$	2849 s	2857 m	$\nu_{s} CH_{2}$
		3 0	~2726 vw	2732 °) w	$2\delta_{s}$ CH $_{3}$
décane					
2963 m 🗎	2060 m	a'eta CH	undécane		
2953 s ∫	2500 m	$V_{\rm s} = C V_{\rm a} = C M_3$	2954 mw	2960 m	$\nu_{s}' \text{ et } \nu_{a} \text{ CH}_{3}$
2918 s, b	2928 s, b	$\nu_{\mathrm{s}}^{}\mathrm{CH_{3}^{b}}$), $\nu_{\mathrm{a}}^{}\mathrm{CH_{2}^{}}$	2918 ms, b	2928 ms, b	$\nu_{s} \operatorname{CH}_{3}{}^{b}$), $\nu_{a} \operatorname{CH}_{2}$
$\sim 2899 \ w \ Sh$	0074	AS CIT b)	$\sim 2898 w Sh$	2974	28 CIL b
28/1 m	28/4 m	20_{as} CH ₃ $^{\circ}$	2812 VW	2814 mw	$20_{as} CH_{3}$
20498	2851 m	$\nu_{s} C \Pi_{2}$	2049 m	2031 m	v _s un ₂

Tableau 1. Fréquences en cm⁻¹ des vibrations de valence de la série d'hydrocarbures non ramifiés du butane à l'undécane

a) s =forte (strong), m =moyenne (medium), w =faible (weak), v =très (very), b =large (broad), Sh =épaule (shoulder), comb. = combinaison ou harmonique.

b) Bande perturbée par une résonance de Fermi.

c) Bande mesurée dans le liquide pur.

néopentane			méthyl-2-per	ntane	
solide	solution	attributions	solide	solution	attributions
2954 s, b ^a)	2957 s, b ^a)	ras CH3	2964 w, Sh ^a)		
2912 w	2913 w	$\nu_{s}^{"CH_{3}b}$	2956 s, b	2959 s, 0 4)	v _s etv _a CH ₃
2892 m	2896 m	$2\delta_{as} CH_{3}^{b}$	2932 w, Sh	Í 2020 - 1	cub cu
2862 m	2867 m	$2\delta_{as}^{as} CH_{3}^{b}$	2927 ms, b	2929 m, b	$v_{\rm s}$ CH ₃ ^b), $v_{\rm a}$ CH ₂
2750 vw		comb.	2897 mw	2901 mw	C(2)-H
2 7 10 w		comb.	2873 ms	2874 m	$2\delta_{as} CH_3^{b}$
			2862 Sh		
diméthyl-2,	3-butane		2843 m	2847 mw	$\nu_{\rm s} \rm CH_2$
2958 ms,b	2960 ms, b	v_{s}' et v_{a} CH ₃			-
\sim 2929 m,b	∼2936 m,b	ν _s CH ₃ ^b)	diméthyl-2,4	1-pentane	
2872 m	2874 m	$2\delta_{as} CH_3 b$)	2965 m		
			2958 ms	2959 s,b	$v'_{s} \operatorname{ct} v_{a} \operatorname{CH}_{3}$
méthyl-3-pe	ntane		2951 ms		
2962 s, b	2963 s, b	ν_{s}' et ν_{a} CH ₃	\sim 2938 Sh	2936 m, b	ν _s CH ₃ ^b)
2932 w, Sh	2930 m,b	r _s CH ₃ b)	∼ 2927 w,b	2929 Sh	
2916 ms,b	2921 s, Sh	$\nu_{a} CH_{2}$	2907 m, b	2905 m	$r_{a} CH_{2}$
2874 ms	2877 m	$2\delta_{as} \operatorname{CH}_{3}{}^{\mathrm{b}}$	2898 w		
2855 m	2860 s, Sh	$v_{s} CH_{2}$	2868 m	2871 m	$2\delta_{as} \operatorname{CH}_{3} {}^{\mathrm{b}}$
			2840 w	2840 w	$r_{s} CH_{2}$

Tableau 2. Fréquences des vibrations de valence d'hydrocarbures ramifiés

Tableau 3. Fréquences des vibrations de valence des halogénures de t-butyle

iodure de t-butyle		bromure de t	bromure de t-butyle-D ₆ -1,3		
solide	solution	attributions	solide	solution	attributions
2985 s ^a)	2985 s ^a)	<i>v</i> , 'CH ₃	2987 s ^a)	2986 ms ^a)	v, 'CH3
2964 m	2964 s	$r_a CH_3$	2963 s	2966 ms	$v_{3}^{*}CH_{3}^{*}$
2958 s			2920 s	2920 ms	$\vec{r_s} CH_3 b$
$2940 \ m$	2935 m	comb.	2864 s	2864 m	$2\delta_{as}CH_{3}b$
2916 s, b	2916 s	$\nu_{s} CH_{3} b$	2829 vw		u, -
2887 s	2890 s	comb.	2736 w		$2\delta_s$
∼2876 s, Sh	2873 m	comb.	2240 s	2239 ms	$r_{s}'CD_{3}$
2858 m	2857 m	comb.	2218 s	2220 ms	$v_a CD_3$
			2170 m	2172 w	$2\delta_{s}CD_{3}$
bromure de	t-butylc		2155 m	2154 w	comb. $(\delta_{as} + \delta_{s})$
2984 s	2988 s	$v_{s}'CH_{3}$	21 3 9 w		
2969 s	2970 s	v. CH.	2107 m	2108 w	$\nu_{s} CD_{3}^{b}$
2965 s J		a s	2061 s	2063 m	$2\partial_{as}CD_{3}$
$\sim 2942 m$	2942 m	comb.			
2924 ms,b	2924 ms	$\nu_{\rm s} \mathrm{CH}_3$	chlorure de	t-butyle	(() T T
$\sim 2916 Sh$	2000 1		2987 mw	2987 s	v_{s} CH ₃
2900 m	$\sim 2900 m, b$	comb.	2975 mw	2975 s	$v_{a} CH_{3}$
2888 w	$\sim 2894 Sh$	comb.	2950 w	2947 m	comb.
2861 m	∼2868 s, Sh	comb.	2931 w	2928 m	ν _s CH ₃ ^b)
			2904 w	290 1 m	comb.
			2867 w	2867 mw	comb.

a) et b) cf. Tableau 1.

D1.6-hex	ane		D1.6-hexa	ne	
solide	solution	attributions	solide	solution	attributions
$2917 s, b^{a}$	2926 s, b ^a)	v _a CH ₂	$2956 s^{a}$ }	2954 sª)	$\nu_{a} C(1) H_{2}$
2838 s 2847 s 1 2246 m	2862 ms, b ~2239 Sh	$v_{s}CH_{2}$ comb.	2930 s 2937 s 2917 s 3	2929 s, b	$v_{s}C(1)H_{2}\operatorname{et} v_{a}CH_{2}$
2222 ms 2206 s 2191 m	2220 Sh 2210 m,b	$v_{s}' CD_{3} v_{a} CD_{3}$	2855 ms 2181 m 2173 s. Sh	2860 m, b 2179 mw, b	$v_{s}CH_{2}$ vC(1)-D
$\sim 2185 w$ 2155 w	\sim 2180 Sh	comb.	2141 vw		
2124 m 2112 s, Sh	2125 w,b	$\nu_{s} CD_{3}^{b}$)	D ₁ -1-hexane 2963 ms 2954 s	296 0 s	$v_{s}' et v_{a} CH_{3}, v_{a} C(1) H_{2}$
2081 m $2070 m$ \int 2035 w	2075 mw	$2\delta_{as}CD_3^{b}$) comb.	$2934 s$ } 2948 ms 2929 s }	2020 - 1	
			\sim 2917 s, b \hat{j}	2930 8,0	$v_{s}C(1)H_{2}, v_{s}CH_{3}S), v_{a}CH_{2}$
			2871 m	2874 m	$2\delta_{as}CH_{3}b)$
			$\sim 2854 ms, b$	2861 ms	$\nu_{\rm s} CH_2$
			$\sim 2725 vw \sim$	~2133 VW	$20_{\rm s}$ CH ₃
			2101 m $2171 mm \sim$	$\sim 2160 \text{ mw}, 0$	$\mathcal{VC}(1)$ -D
D ₄ -2, 5-hex	ane		D ₂ -2-hexand		
2962 ms 2952 ms	• 2960 s	v_{s}' et v_{a} CH ₃	2962 s	2961 s	v_{s}' et v_{a} CH ₃
2932 m ~2922 Sh	2929 s, Sh 2917 s, b	$\nu_{s}^{CH_{3}^{b}}$ $\nu_{s}^{CH_{3}}$	$\begin{array}{c} 2930 Sh \\ 2914 s, b \end{array}$	~2929 s, b	$(\nu_{s}^{}\mathrm{CH}_{3}^{}^{b}), \nu_{a}^{}\mathrm{CH}_{2}^{}$
2905 ms, b 2870 m 2851 ms	2874 ms 2854 ms	$2\delta_{as}CH_{3}^{b}$ $\nu_{s}CH_{2}$	2899 ms 2871 ms 2854 s, Sh ~	2874 ms ~2860 ms, b	$\begin{array}{l} 2\delta_{\mathbf{as}}\mathrm{CH_{3}}^{\mathbf{b}})\\ \nu_{\mathbf{s}}\mathrm{CH_{2}} \end{array}$
222() eren	~2733 vw	$2\delta_{s}CH_{3}$	2849 ms ~2726 vw	2732 vw	$2\delta_{s}CH_{3}$
~22229 0w 2181 mw 2167 mw	\sim 2220 3 <i>n</i> 2179 m,b	$v_{a}CD_{2}$	~2238 vw 2188 m	2191 mw,b]	. CD
2123 mw 2105 m	2108 m,b	$v_{s}CD_{2}$	2170 m 2133 vw	2175 mw, b j 2147 w	$v_a CD_2$
2078 w			2121 w 2105 m 2091 w	2110 m, b	v _s CD ₂
D ₄ -3,4-hexai	ıe		D ₂ -3-hexan	e	
$\left.\begin{array}{c}2963 \ s\\2954 \ s\end{array}\right\}$	2960 s	$v_{\rm s}'$ et $v_{\rm a}$ CH ₃	2963 ms 2953 ms	2960 s	$v_{\rm s}$ 'et $v_{\rm a}$ CH ₃
2932 ms	2931 m s, b	$\nu_{s} CH_{3}^{b}) et \nu_{a}$	CH ₂ 2931 m	2930 s, b	$v_{s} CH_{3}^{b}$), $v_{a} CH_{2}$
$\sim 2914 Sh$	2005	(311	2911 m, b		
2903 m, b	2906 m	$v_{a}CH_{2}$	2892 w	2975	28 CH b)
~2896 Sh	2871	28 CH b)	2011 M 2858 m h	2013 MS	$20_{as} \cup \Pi_3^{-1}$
28/1 m	2814 ms 2864 m	$20_{as} \cup \Pi_3$	$\sim 2726 m_{\odot}$	~2733 m	$2\delta CH_{a}$
2000 m	~2730 w	$2\delta_{s}CH_{3}$	-2.2000		

Tableau 4. Fréquences des vibrations de valence d'hexanes deutériés

D ₄ -3, 4-hexan	e		D2-3-hexan	e	
solide	solution	attributions	solide	solution	attributions
21.21	21 00 1	0.5	2177 mw	2171 mw.b	v_{a} CD _a
2184 m	2189 m,b	$v_{a}CD_{2}$	2164 m j	,	- a 2
$2174 \ mw$	$\sim 2183 s, Sh$		2145 w		
2170 mw			2128 vw		
2098 <i>w</i> , <i>b</i>	~2086 mw,b	$v_{\rm s} CD_{\rm s}$	-2100 s, Sn	~2097 mw,b	$\nu_{e} CD_{2}$
2080 m j		3 -	2101 m J		5 -
~2038 VW			2002 mw		
D ₁ -2-hexan	e		D ₁ -3-hexand	e	
2963 s]	2061 .	" (ot " CH	2962 s }	2061 c	n í ot n CH
2953 <i>s</i> ∫	29013	$v_{\rm s} {\rm et} v_{\rm a} {\rm Cm}_3$	2953 s 🔰	29013	$v_{s} et v_{s} eff_{3}$
~2930 Sh]	2022 c h	" CH b) at " CH	2931 ms]	2028 c h	"CH b) "CH
2914 s,b ∫	2922 3,0	$\nu_{\rm s}$ cm ₃) et $\nu_{\rm a}$ cm ₂	2914 <i>s,b</i> ∫	49403,0	$\nu_{\rm s}$ CII ₃), $\nu_{\rm a}$ CII ₂
~2897 Sh			2893 m		
2871 ms	2874 ms	$2\delta_{as}CH_{3}b$	2886 mw	205.	
2854 ms	2858 ms.b	v. CH.	2872 s	2874 ms	$2\partial_{as}CH_3$ ^D)
2849 ms J	0724		2857 s, b	2862 ms	$v_{s} \cup H_{2}$
$\sim 2726 vw$	$\sim 2734 vw$	20 _s CH ₃	212/00 /	$\sim 2731 vw$	$20_{\rm s}$ CH ₃
2180 W			2191 vw		
2105 000	- 2140 m h	u(C(2)) D	2143m	~ 2145 m h	a C (3)-I)
2130 m	\sim 21+9 ω , 0	$\mathcal{V} \subset (\mathcal{L})^{-1}$	2121 m /	-21+5 w, 0	VC(3)-D
$\sim 2110 \mu m$			LILI <i>m</i>		
D1 3 1 6-1	herane		Dhexane	$(H_{a}-2,5)$	
		· · · · · · · · · · · · · · · · · · ·			·····
- 2945 vw			2944 w		
2929 m	$\sim 2928 s, Sh$	$\nu_{\star} CH_{s}$	2930 mw		
2908 ms, b	2914 <i>s</i> , b	2 2	2902 s	2899 s, b	ν C(2)-H
2879 VW	2862 .		2892 <i>s</i> j		
2800 s	28038	$v_{s}CH_{2}$	2220 .)		
- 2242 man			2213 c	2216 s	$v_{\rm s}' {\rm et} v_{\rm a} {\rm CD}_3$
$\sim 2270 m h$	2217 s b	n'etn CD	2185 c h	2191 msh	n CD
2195 m	$\sim 2195 m$]	's tractora	2169 m	<u> </u>	ra2
2171 m	~2177 s, Sh	ν_{a} CD $_{2}$	2142 m	2148 vw	
2122 m	2124 m,b	$\nu_{\rm c} CD_{\rm a}^{\rm b}$	2126 m	2124 w	$\nu_{a} CD_{a}^{b}$
	~2109 s, Sh	v CD ₂	2101 m, b	2103 mw, b	v CD ₂
20 75 m s	2078 m	$2\delta_{as}CD_{3}^{b}$	2073 m, b	20 75 mw	$2\delta_{as}CD_{3}b$
D ₅ -1, 3-hexan	ie		D4-2, 4-hex	ane	
2963 m	}		2963 ms]		
2955 ms	2960 s	$v_{s}' et v_{a} CH_{3}$	2953 ms	2961 s	$v_{s}' \operatorname{et} v_{a} \operatorname{CH}_{3}$
2929 m			2933 m	2931 ms	$\nu_{\rm c} \rm CH_{3}^{\ b}$
2910 ms, b	$\sum_{i=2926 \ s, b}$	v_{s} CH $_{3}$ °), v_{a} CH $_{2}$	2918 m]	20.20	5 ° '
2892 w	,		2905 m	2908 ms	$v_{a}CH_{2}$
2872 mw	2874 m	$2\delta_{as} CH_{3}^{b}$	2896 ms '		
2860 ms	1962		2871 m	28 7 4 ms	$2\delta_{as}CH_{3}b$
2849 mw]	20028	r _s C11 ₂	2859 m l	2862 ***	иСН
			2849 m ∫	4004 m	V _S 0112

Tableau 4. – suite

D5-1, 3-hexan	e		D4-2, 4-he	xane	
solide	solution	attributions	solide	solution	attributions
2246 vw 2219 m 2204 w	2219 m	comb. $v_{s}' et v_{a} CD_{3}$	2203 w 2180 mw	\sim 2200 Sh	
2187 w 2171 mw 2150 w	2179 mw, b	$v_{a}CD_{2}$	2172 mw 2160 m 2120 vw	$\begin{cases} 2175 m, b \\ 2125 s. Sh \end{cases}$	v _a CD ₂
2121 w 2099 m 2079 mw	2123 mw 2100 mw,b 2079 mw		2107 m 2099 mw 2083 w	2110 m, b 2102 Sh	ν _s CD ₂
D ₁₄ -hexane			D ₇ -1,2,3-	hexane	
2264 vw ~2240 Sh			2963 ms 2954 ms	2960 s	$v_{s}' \operatorname{et} v_{a} \operatorname{CH}_{3}$
2220 s 2214 s 2204 s 2186 c	2218 s, b 2205 s, Sh	$v_{s}' et v_{a} CD_{3}, v_{a} CD_{3}$	2930 Sh 2924 ms 2910 ms 2891 mm) 2928 s, b	v_{s} CH ₃ ^b), v_{a} CH ₂
21883 2148 mw, b			2873 m	2874 ms	$2\delta_{as}CH_{3}b)$
2132 mw 2099 s 2091 s	~2131 s, Sh 2101 s, b	$v_{s}CD_{3}^{b}$ $v_{s}CD_{2}$	2858 Sh 2852 m	$\begin{cases} 2860 \ ms, b \end{cases}$	$v_{s}CH_{2}$
2071 m	2073 ms	$2\delta_{as}CD_{3}{}^{b})$	2250 vw 2217 ms 2211 ms	$\left.\right\} 2218 s, b$	$\nu'_{s} \operatorname{ct} \nu_{a} \operatorname{CD}_{3}$
			2200 m 2179 Sh 2172 m	} 2183 m	$\nu_a CD_2$
			2162 w 2143 vw	} 2147 vw	
			2110 m, b 2086 ms 2073 m	2104 m, b 2091 mw 2074 m	$p_{s} \cup D_{3}^{\circ}), p_{s} \cup D_{2}^{\circ}$
			2010		as 3 /

Tableau 4. - suite et fin

Les spectres des hexane, pentane, butane, méthyl-2-pentane, méthyl-3-pentane et diméthyl-2, 4-pentane montrent clairement que la bande vers 2930 cm⁻¹ ne diminue pas aussi vite que celle vers 2860 cm⁻¹, prouvant ainsi que la bande vers 2930 cm⁻¹ contient également une contribution du groupe méthyle. On a représenté, d'autre part, sur la figure 1 les rapports des intensités relatives des bandes à 2960 et à 2930 cm⁻¹, I_1/I_2 , en fonction du logarithme du rapport CH₃/CH₂ dans une série de paraffines¹): dodécane (-0,70), décane (-0,60), octane (-0,48), heptane (-0,40), hexane (-0,30), pentane (-0,18), butane (0), méthyl-2-pentane (0,18), méthyl-3-pentane (0,18) et diméthyl-2,4-pentane (0,60); le diméthyl-2,3-butane (∞) permet d'évaluer une limite supérieure du rapport des intensités relatives, puisqu'il ne contient pas de

¹) La valeur du logarithme du rapport CH₃/CH₂ est indiquée entre parenthèses pour chaque paraffine.

D ₆ -1, 5-pentan solide	solution	attributions	D ₆ -1,7-heptar solide	<i>ie</i> solution	attributions
$ \begin{array}{c} 2939 \ m^{a}) \\ 2926 \ ms \\ 2916 \ s \end{array} $	2926 s ^{.a})	r _a CH ₂	$ \begin{array}{c} 2919 s, b^{\mathbf{a}} \\ 2858 s \\ 2848 s \end{array} $	2926 s, b ^a) 2861 s, b	v _a CH ₂ v _s CH ₂
$\left.\begin{array}{c} 2887 \ w \\ 2858 \ s \\ 2847 \ m \end{array}\right\}$	2864 ms	₽ _s CH ₂	2246 w 2230 w 2215 m)		
2246 m 2223 s 2206 s	~2239 Sh 2220 m 2207 m	comb. $\nu_{s}'CD_{3}$ $\nu_{a}CD_{3}$	2207 ms 2123 w, b 2073 mw, b	2210 m,b 2124 w,b 2077 mw	$\begin{array}{c} v_{s}' \mathrm{et} v_{a} \mathrm{CD}_{3} \\ \nu_{s} \mathrm{CD}_{3} ^{\mathrm{b}}) \\ 2 \delta_{as} \mathrm{CD}_{3} ^{\mathrm{b}}) \end{array}$
2176 vw, b 2123 m 2123 m ~2098 w	2123 w	$r_{\rm s}{\rm CD_3}^{\rm b})$			
2077 ms 2077 ms 2065 w 2057 w	2078 mw	$2\delta_{as}CD_{a}^{b}$			
D ₆ -1,8-octane			D ₆ -1,10-déca	ne	<u></u>
2918 s 2858 ms 2849 ms	2926 s, b 2860 s, b	$v_{a} CH_{2}$ $v_{s} CH_{2}$	2919 s, b 2858 ms 2849 s	2927 s,b 2857 s,b	ν _a CH ₂ ν _s CH ₂
$\begin{array}{c} 2246 vw \\ \sim 2212 Sh \\ 2206 mw,b \\ 118 vw \\ 2077 w \end{array}$	2211 m, b 2124 w 2077 mw	$v_{s}' \operatorname{ct} v_{a} \operatorname{CD}_{3}$ $v_{s} \operatorname{CD}_{3}^{\mathbf{b}})$ $2\delta_{as} \operatorname{CD}_{3}^{\mathbf{b}})$	2246 vw 2221 mw 2207 mw 2194 w	221 3 m, b	$v_{\rm s}'$ et $v_{\rm a}$ CD ₃
			2134 vw 2120 w, b 2075 mw	2124 w 2075 mw	$rac{v_{\mathbf{s}} \mathrm{CD}_{3} ^{\mathbf{b}})}{2 \delta_{\mathbf{as}} \mathrm{CD}_{3} ^{\mathbf{b}})}$

Tableau 5. Fréquences des vibrations de valence de n-alcanes D_6 -1, ω

groupe CH_2 . Il en ressort que la bande vers 2930 cm⁻¹ a une intensité liée au nombre de groupes CH_3 , indépendamment d'un certain recouvrement des deux bandes. Les intensités relatives de ces bandes sont évaluées par leurs hauteurs, les spectres étant relevés dans les mêmes conditions expérimentales. On montrera plus loin l'existence d'une bande appartenant au groupe CH_3 dans la région de 2900 à 2930 cm⁻¹ des spectres du néopentane et des halogénures de *t*-butyle.

3.2. Le néopentane (groupe T_d) présente deux vibrations normales triplement dégénérées observables en IR.: $v_s(F_2)$ et $v_{as}(F_2)$. Le modèle de groupe prévoit lui aussi deux bandes, v_s et v_{as} , car le groupe CH₃ garde sa symétrie locale C_{3v} . On observe en fait trois bandes en phase gazeuse et quatre en phase liquide et solide, la bande de plus basse fréquence en phase gazeuse donnant lieu à deux bandes en phase liquide et solide. Le tableau 6 rassemble les principaux résultats concernant l'observation et

Fig. 1. Intensités relatives des bandes vers 2960 et 2930 cm⁻¹ en fonction du logarithme du rapport CH_3/CH_2

La limite supérieure de I_1/I_2 représentée en pointillé et évaluée à l'aide du diméthyl-2, 3-butane met en évidence la contribution des groupes méthyle à l'intensité de la bande à 2930 cm⁻¹ (cf. 3.1)

Fréquences observées ^c) Présent travail (IR.) Auteurs cités							Fréquences calculées	
gaz	solution	attributions	[12]	[10] [15]	attributions	[11]	[2]	
2962 s, b ª)	2957 s, b a)	v _{as} CH ₃	2962 g 2955 1	2959 g 2955 1	$v_{as}(F_2)$ $v_{as}(E)$	2984 2984	2968 2969	
2906 w	2913 w 2896 m	$\nu_{s}^{}CH_{3}^{b}$) comb. ^b)	29111	2909 1 (2896)1	$v_{\rm s} ({\rm A_I})$ comb. (A ₁)	2932	2889	
2877 m	2867 m	comb. ^b)	2876 g	2876 g (2868)1	$v_{s}(F_{2})$ comb. (A ₁)	29 3 2	2889	

Tableau 6. Fréquences des vibrations de valence du néopentane

a) et b) cf. Tableau 1.

e) g: spectre IR. en phase gazeuse, l: spectre Raman en phase liquide.

le calcul des fréquences des vibrations de valence C-H du néopentane. Ce tableau appelle plusieurs remarques:

1) Les bandes observées sont plus nombreuses que prévu, ce qui s'explique par la présence de résonances de *Fermi* avec des harmoniques ou combinaisons des déformations asymétriques [12]. Ces résonances sont probablement plus complexes que dans le cas des halogénures de méthyle, en raison du grand nombre d'harmoniques et de combinaisons qui peuvent intervenir ([14], p. 355).

2) Les observations relevées dans la littérature [10] [12] [13] [15] diffèrent sensiblement des nôtres, sans qu'il y ait incompatibilité.

3) Nos attributions sont basées sur les enveloppes du type PQR des deux bandes à 2906 et 2877 cm⁻¹. En effet, *Graham* [14] prévoit pour les molécules tétraméthylées du type $M(CH_3)_4$ une bande très large pour r_{as} (à cause d'une interaction de *Coriolis* avec la rotation interne d'un groupe méthyle) et une bande étroite PQR pour r_s . Cependant, le même auteur indique que le néopentane fait exception ([14], p. 361). Ses

prévisions sont pourtant confirmées par nos observations, à ceci près que nous observons deux bandes PQR, attribuées à une résonance de *Fermi*.

 Les calculs rendent mal compte des observations à cause de la présence des résonances de Fermi.

5) Le spectre *Raman* [15] indique la présence de deux raies moyennes polarisées à 2896 et 2868 cm⁻¹, ce qui laisse supposer la présence de perturbations.

3.3. Les halogénures de t-butyle présentent en IR. (groupe C_{3v}) deux vibrations normales symétriques dont une doublement dégénérée $(v_s(A_1) \text{ et } v_s(E))$ et trois vibrations normales asymétriques dont deux sont doublement dégénérées $(v_{as}(A_1) \text{ et} 2v_{as}(E))$. Le modèle de groupe prévoit trois bandes, puisque la molécule ne conserve pas l'axe d'ordre 3 au groupe CH₃: $v_s'(A')$, $v_a(A'')$ et $v_s(A')$.

La présence d'un groupe CH_3 et de deux groupes CD_3 donne à la molécule du bromure de t-butyle- D_6 -1, 3 la symétrie C_s et nous permet de proposer une attribution sûre pour le groupe CH_3 . Toutes les vibrations de valence C-H(C-D) et les harmoniques et combinaisons des déformations sont observables en IR. On ne peut donc espérer un spectre simple dans les régions de 3 et 5 μ m que dans la mesure où ces combinaisons et harmoniques sont faibles par rapport aux vibrations de valence, ce qui est bien le cas en l'absence de perturbations. Le modèle de groupe prévoit trois bandes pour CH_3 et CD_3 . Or nous observons quatre bandes pour CH_3 et six pour CD_3 (cf. tableau 3). Ceci s'explique à nouveau par des résonances de *Fermi* entre vibrations de valence C-H(C-D) et harmoniques ou combinaisons des déformations asymétriques.

Pour la région des 3 μ m, l'attribution proposée est basée sur la présence d'une résonance de *Fermi* entre v_s et $2\delta_{as}$, ce qui permet d'expliquer la présence de la bande supplémentaire à 2864 cm⁻¹. La localisation de v_s est faite par l'intermédiaire de celle de $2\delta_{as}$. En effet, l'harmonique $2\delta_s$ permet d'évaluer l'anharmonicité des défor-

Fig. 2. Groupes méthyle du bromure de t-butyle-D₆-1,3

Nous représentons en traits pleins les fréquences observées, en pointillé les fréquences déduites. Les effets isotopiques sont indiqués entre parenthèses à côté des attributions. Dans la notation C(1) D le chiffre entre parenthèses indique la position de l'oscillateur dans la chaîne (cf. 3.3)

C(1)-D le chiffre entre parenthèses indique la position de l'oscillateur dans la chaîne (cf. 3.3)

mations et donc la fréquence de $2\delta_{as}$ non perturbée. Ceci permet de situer ν_s non perturbée vers 2898 cm⁻¹ (cf. fig.2).

La région des 5 μ m est plus complexe du fait de la présence de deux groupes CD₃, mais des résonances du même type ont lieu. On verra d'ailleurs plus loin (iodure, bromure et chlorure de *t*-butyle) des spectres aussi compliqués dans la région des 3 μ m dès que plusieurs groupes CH₃ sont présents dans une molécule. L'existence d'une résonance de *Fermi* est en effet nécessaire pour expliquer la bande moyenne à 2063 cm⁻¹, de fréquence trop basse pour être attribuable à v_s et d'intensité trop forte pour être attribuable à un harmonique ou à une combinaison non perturbés (cf. tableau 3). On peut encore noter que les effets isotopiques sur v_s et δ_{as} étant très proches (1,398 et 1,403 respectivement [16]), on retrouvera à peu près la même situation dans les régions des 3 et 5 μ m. L'harmonique 2 δ_s , qui à cause des effets isotopiques apparaît maintenant entre v_a et v_s , permet d'évaluer l'anharmonicité des déformations et donc la fréquence de 2 δ_{as} non perturbée. Ceci permet de situer v_s non perturbée vers 2094 cm⁻¹ (cf. fig.2).

On trouvera dans le tableau 3 les observations et les attributions proposées pour les chlorure, bromure et iodure de t-butyle, déduites de celles du bromure de t-butyle- D_{6} -1,3. Par rapport au spectre de ce bromure de t-butyle- D_{6} , les spectres se compliquent de deux nouvelles bandes (vers 2940 et 2900 cm⁻¹) que l'on peut attribuer à des harmoniques et combinaisons comme l'ont fait *Evans & Lo* pour le chlorure [9], à condition d'admettre des résonances avec v_s , étant donné l'intensité de ces bandes. La présence de résonances est confirmée par l'absence de corrélations entre les niveaux calculés des harmoniques et des combinaisons, lorsqu'on évalue l'anharmonicité à l'aide de $2\delta_s$. Etant donné que l'on a maintenant quatre bandes au lieu de deux dans la région de v_s , l'attribution de v_s à une de ces bandes n'est pas évidente. En particulier les résonances complexes impliquent que les harmoniques et combinaisons perturbés, et ainsi intensifiés, ont partiellement le caractère de v_s . La localisation de v_s perturbée est donc quelque peu académique, et nous proposons seulement une bande principalement à caractère v_s , les autres le possédant dans une moindre mesure.

3.4. Conclusion. Les attributions des vibrations de valence du groupe CH₃ dans les alcanes sont proposées jusqu'à maintenant par des voies indirectes. Le seul cas tout à fait clair est celui du bromure de t-butyle-D₆-1, 3, et il était donc souhaitable d'étudier un alcane deutérié qui, comme ce produit, ne contiendrait qu'un seul groupe CH₃. Nous avons donc étudié le spectre du D₉-1, 2, 3, 4-pentane (cf. tableau 7). Le modèle de groupe pour CH₃ prévoit trois bandes, comme c'est toujours le cas pour les groupes méthyle des *n*-alcanes. Or nous observons quatre bandes principales dans le spectre du D₉-1, 2, 3, 4-pentane solide, ainsi que le prévoyaient nos attributions. Ceci confirme la présence d'une résonance de *Fermi* entre v_s et $2\delta_{as}$, et nous proposons donc la même attribution que pour le bromure de t-butyle-D₆-1, 3. La localisation de v_s se fait comme précédemment à partir de celle de $2\delta_{as}$ non perturbée. Nous situons $2\delta_{as}$ non perturbée vers 2890 cm⁻¹ et v_s non perturbée vers 2914 cm⁻¹. Cependant il n'est pas impossible de proposer l'attribution inverse si l'on admet une très faible anharmonicité pour $2\delta_{as}$.

Il ressort de tout ce qui précède que le groupe CH_3 absorbe régulièrement dans la région de 2900 à 2930 cm⁻¹. Cette absorbtion correspond à sa vibration de valence symétrique plus ou moins perturbée et par là même d'intensité relativement faible.

solide	solution	attributions	solide	solution	attributions
$\begin{array}{c} 2963 \ s^{a}) \\ 2955 \ s \\ 2930 \ m \\ \sim 2918 \ w \\ 2901 \ w \\ 2871 \ m \\ 2859 \ vw \\ \sim 2850 \ Sh \end{array}$	2960 s ^{.a}) 2931 ms 2904 m 2873 ms	$r_{s}' \text{ ct } r_{a} \text{ CH}_{3}$ $r_{s} \text{ CH}_{3}^{\text{ b}})$ comb. $2\delta_{as} \text{ CH}_{3}^{\text{ b}})$ comb. comb.	$\begin{array}{c} 2243 \ vw^{a}) \\ \sim 2220 \ Sh \\ 2215 \ s \\ 2204 \ vw \\ 2189 \ s \\ 2179 \ w \\ 2166 \ w \\ 2146 \ vw \end{array}$	2217 s ª) 2194 ms	$v_{s}' et v_{a} CD_{3}$ $v_{a} CD_{2}$
2823 vw 2729 vw	2828 vw 2732 vw	comb. $2\delta_{s}$ CH ₃	$ \begin{array}{c} 2117 m \\ 2107 w \\ 2102 w \\ 2096 m \\ \end{array} $ $ \begin{array}{c} 2087 Sh \\ 2078 w \\ 2065 w \\ \end{array} $	2116 ms 2100 ms 2072 m	$v_{s} CD_{3}^{b}$) et $v_{s} CD_{2}^{c}$ $v_{s} CD_{2}^{c}$ $2\delta_{as} CD_{3}^{b}$)

Tableau 7. Fréquences des vibrations de valence du Do-1, 2, 3, 4-pentane

La bande vers 2870 cm⁻¹ correspond à un harmonique $2\delta_{as}$ déplacé et intensifié par la résonance avec ν_s . La présence de la résonance de *Fermi* est donc très courante dans le cas des vibrations du groupe CH₃, et en particulier elle a toujours lieu dans les alcanes, produisant la bande «caractéristique» à 2872 \pm 10 cm⁻¹, qui reste liée à la présence du groupe méthyle puisqu'elle a partiellement un caractère ν_s à qui elle emprunte son intensité. Cette situation simple se complique dans le cas de groupes isopropyle ou *t*-butyle, où l'on ne peut pas mettre en évidence une perturbation mais où des perturbations complexes ont lieu.

4. Etude des vibrations de valence C-H/C-D; proposition d'un modèle expérimental. – Sur la base des attributions des vibrations de valence des groupes CH_3 et CH_2 proposées ci-dessus, nous allons étudier plus en détail les fréquences des vibrations de valence de ces groupes dans une série d'alcanes. Il s'agit d'introduire dans un simple modèle de fréquences de groupes des perturbations qui rendent compte des spectres expérimentaux.

Dans un premier temps, nous étudierons donc les fréquences des groupes dans différentes molécules à l'aide d'échanges isotopiques spécifiques. Puis nous proposerons un modèle expérimental élaboré plus particulièrement pour l'hexane, en raison du grand nombre d'hexanes deutériés disponible, mais qui donne quand même une solution d'ensemble du problème de la vibration de valence C-H/C-D.

4.1. Vibrations de valence C-D. – Le groupe CD_3 est étudié à l'aide des spectres de la série des *n*-alcanes D_6 -1, ω (cf. tableau 5) et des hexanes deutériés suivants: D_6 -1,6, D_2 -1,6 et D_1 -1 (cf. tableau 4). Les deux bandes constituant v_{as} sont résolues dans les spectres des solutions d'hexane- D_6 et de pentane- D_6 , contrairement au cas du groupe CH_3 . Ceci est confirmé par les spectres des solides qui présentent tous un doublet. Une perturbation, provoquée par un harmonique ou une combinaison de fréquence supérieure, affecte la composante de plus haute fréquence de ce doublet, dont l'intensité varie dans la série des D_6 -1, ω selon la perturbation. Nous admettons, pour l'attribution de v_s , la présence d'une résonance de *Fermi* avec un harmonique de δ_{as} , car la bande à 2125 cm⁻¹ est trop intense et a une fréquence trop élevée pour être attribuée à un harmonique non perturbé. Quant à la bande à 2075 cm⁻¹, elle pourrait correspondre à un harmonique, mais son intensité est beaucoup trop forte. Ces deux bandes sont donc dues à ν_s CD₃ en résonance avec $2\delta_{as}$, et le choix de 2125 cm⁻¹ comme étant plus caractéristique de ν_s est déduit de la position de $2\delta_{as}$ non perturbée vers 2090 cm⁻¹.

La vibration de valence $\nu C(1)$ -D, du groupe CH_2D , est observée à 2180 cm⁻¹. La règle de la moyenne [17] appliquée à ν_{as} et à ν_s non perturbée, prévue vers 2110 cm⁻¹ (cf. fig.3), donne la même fréquence. Il n'existe donc pas de couplage notable avec les vibrations extérieures au groupe. Ceci ne fait que confirmer un résultat déjà connu pour le groupe CH_3 [5]. On obtient des couplages peu probables en calculant la moyenne à l'aide des fréquences observées, c'est-à-dire perturbées; ce qui confirme notre attribution. La situation est très sensiblement la même avec les groupes CD_3 des *n*-alcanes autres que l'hexane, comme il fallait s'y attendre.

Fig. 3. Groupes méthyle de l'hexane

Mêmes remarques que pour la figure 2. Nous représentons en trait-point les fréquences du groupe CDH_2 dans la région des 2900 cm⁻¹

Les groupes CD_2 ont été étudiés plus particulièrement dans les spectres des hexanes D_4 -2,5, D_2 -2, D_1 -2, D_4 -3,4, D_2 -3 et D_1 -3 (cf. tableau 4). Nous distinguerons deux types de groupes CD_2 selon qu'ils sont ou non voisins d'un groupe méthyle, notés $C(2)D_2$ et $C(3)D_2$. Les attributions des bandes observées aux vibrations des groupes CD_2 ne posent pas de problèmes dans la mesure où aucune perturbation ne bouleverse le spectre.

Pour le groupe $C(2)D_2$, v_a est dédoublée dans le D_2 -2-hexane mais non dans le D_4 -2,5-hexane. La règle de la moyenne appliquée aux fréquences du groupe $C(2)D_2$, en prenant la moyenne des fréquences du doublet, indique un décalage de quelque 3 cm⁻¹ vers le bas par rapport à la fréquence observée vC(2)-D (cf. fig.4). Ceci correspond à un très faible couplage des vibrations de valence C-D avec des vibrations extérieures au groupe, qui ramené au couplage entre les 2 oscillateurs C-D du groupe est d'environ 4%.

La règle de la moyenne appliquée au groupe $C(3)D_2$, étudié dans le spectre du D_2 -3-hexane, donne un décalage de 11 cm⁻¹ par rapport à $\nu C(3)$ -D observée, ou de 15% si on le ramène au couplage entre les 2 oscillateurs C-D (cf. fig.4). Cependant le

Fig. 4. Groupes méthylène de l'hexane

Mêmes remarques que pour la figure 2. Dans la notation $C(2)X_2$ le chiffre entre parenthèses a la même signification que précédemment, et X est soit H soit D

spectre du D₁-3-hexane solide montre que la vibration $\nu C(3)$ -D est perturbée. La fréquence observée pour $\nu C(3)$ -D en phase liquide est donc peut-être trop élevée. Le D₄-3,4-hexane a la particularité de présenter un très grand couplage entre les oscillateurs C-D, c'est-à-dire que ν_a est plus élevée que pour C(3)D₂ et ν_s plus faible, contrairement à ce que l'on attendrait d'après le modèle proposé plus loin. Dans le cas d'une chaîne de CD₂, on observe ν_a vers 2200 cm⁻¹ et ν_s vers 2100 cm⁻¹, ce qui correspond à une légère augmentation des fréquences par rapport à celles de C(3)D₂, conformément aux prévisions du modèle²).

4.2. Vibrations de valence C-H. L'étude des vibrations de valence des groupes CH_2 et CH_3 est beaucoup plus compliquée par suite de la superposition des bandes correspondant à $\nu_s CH_3$ perturbée et $\nu_a CH_2$, qui exigerait, pour tourner cette difficulté, la présence exclusive de l'un de ces groupes.

Le groupe CH_3 a quand-même été étudié dans les spectres des D_4 -2, 5- et D_4 -3, 4-hexanes, puis dans celui du D_9 -1, 2, 3, 4-pentane. Le cas de ce dernier a déjà été discuté (cf. 3.4.) et nous verrons qu'il concorde très bien avec les propositions déduites des spectres des hexanes deutériés. En ce qui concerne les D_4 -2, 5- et D_4 -3, 4-hexanes (cf. tableau 4), nous attribuons la bande à 2932 cm⁻¹ des solides à v_s CH₃ perturbée. Nous évaluons cette fréquence dans les liquides à 2934 cm⁻¹ d'après la fréquence de v_a CH₂ à 2926 cm⁻¹ dans le D_6 -1, 6-hexane, et la fréquence de v_a CH₂ et v_s CH₃ perturbée à 2930 cm⁻¹ dans l'hexane. D'autre part, le D_2 -1, 6-hexane permet de contrôler cette évaluation par l'attribution de la bande à 2930 cm⁻¹ à v_s C(1)H₂ dans le spectre du solide. Dans celui du liquide nous évaluons la fréquence de v_s C(1)H₂ à 2932 cm⁻¹ d'après la fréquence de v_a CH₂ à 2926 cm⁻¹ dans le D_2 -1, 6-hexane, et celle de v_s C(1)H₂ dans le spectre du solide. Dans celui du liquide nous évaluons la fréquence de v_s C(1)H₂ à 2932 cm⁻¹ d'après la fréquence de v_a CH₂ à 2926 cm⁻¹ dans le D_2 -1, 6-hexane, et celle de v_s C(1)H₂ et v_s C(1)H₂ à 2932 cm⁻¹ d'après la fréquence de v_a CH₂ à 2926 cm⁻¹ dans le D_2 -1, 6-hexane.

²) ()n observe pour v_a et v_s des n-C₈D₁₈ et n-C₁₂D₂₆ 2199 cm⁻¹ et 2099 cm⁻¹ respectivement.

1009

La localisation approximative de $\nu_s CH_a$ non perturbée se fait comme précédemment à partir des localisations de $2\delta_s$ et $2\delta_{as}$ perturbée. Ceci nous permet de proposer comme modèle pour les groupes méthyle de l'hexane (cf. fig. 3): v_s' et v_a à 2960 cm⁻¹, $\nu_{\rm s}$ perturbée vers 2934 cm⁻¹ (non perturbée vers 2915 cm⁻¹), $2\delta_{\rm as}$ perturbée à 2874 cm^{-1} (non perturbée vers 2893 cm⁻¹), $v_aC(1)H_2$ à 2954 cm⁻¹ et $v_sC(1)H_2$ vers 2932 cm⁻¹. La règle de la moyenne appliquée à v_{as} et à v_sCH_3 non perturbée donne 2945 cm⁻¹ pour $\nu C(1)$ -H. Pour $C(1)H_2$ on obtient 2943 cm⁻¹. La concordance entre les deux moyennes est d'autant meilleure que $C(1)H_2$ est légèrement couplé aux groupes voisins, comme les autres groupes CH₂, et suit dès lors moins bien la règle de la moyenne que le groupe CH_{a} . Or les déviations par rapport à cette règle sont toutes observées vers les basses fréquences pour les groupes CH₂. Nous proposons donc 2945 cm^{-1} pour $\nu C(1)$ -H, en admettant que les vibrations de valence du groupe CH₃ ne sont pas couplées aux vibrations extérieures au groupe, celles du groupe $C(1)H_2$ subissant un très faible couplage externe. Aucune des fréquences perturbées du groupe CH_{3} , observée ou déduite, ne permet d'obtenir une fréquence moyenne comparable à celle obtenue à partir de $C(1)H_2$. Cette situation est toujours sensiblement la même, aussi bien dans le D_{g} -1,2,3,4-pentane que dans les alcanes, dans la mesure où l'on observe des bandes attribuables au groupe CH₃.

L'étude des groupes CH_2 souffre des mêmes inconvénients que celle du groupe CH_3 , et seule la série des *n*-alcanes D_6 -1, ω et le D_{10} -1,3,4,6-hexane satisfont à l'exigence énoncée plus haut puisque ces alcanes deutériés ne contiennent pas de groupes CH_3 . Cependant d'autres hexanes deutériés seront utilisés ici, comme le D_4 -2,5-hexane et le D_{12} -hexane(H_2 -2,5). Tout comme pour les groupes CD_2 , nous distinguerons deux types de groupes CH_2 , notés $C(2)H_2$ et $C(3)H_2$. La faible différence entre un groupe $C(2)H_2$ et un groupe $C(3)H_2$ permet d'assimiler à des $C(3)H_2$ tous les groupes CH_2 , autres que $C(2)H_2$, d'un *n*-alcane plus lourd que l'hexane.

Le groupe $C(2)H_2$, qui est isolé dans le D_{10} -1,3,4,6-hexane, présente malgré cela un spectre compliqué par une perturbation. En effet nous observons deux bandes pour v_a . Le même phénomène se retrouve dans le D_4 -3,4-hexane avec une accentuation de la séparation des deux bandes, en partie due à la superposition avec $\nu_s CH_a$ perturbée. Quant à l'origine de cette perturbation, on ne peut qu'émettre des hypothèses. Le fait que cette perturbation n'est pas observée dans le spectre du D_{6} -1, 6hexane peut indiquer une participation des groupes CD2, sans exclure pour autant une intervention du premier harmonique de la déformation du groupe $C(2)H_2$; et ceci malgré des fréquences observées qui semblent trop élevées pour correspondre à cet harmonique. La fréquence de $v_aC(2)H_2$ est donc comprise entre les 2 fréquences observées, et notre choix est là encore basé sur la règle de la moyenne. La fréquence de ν C(2)-H est observée à 2899 cm⁻¹ et le choix de ν_a C(2)H₂vers 2926 cm⁻¹ produit un décalage vers les basses fréquences de 4 cm⁻¹, soit d'environ 6% si on le rapporte au couplage entre les deux oscillateurs C–H (le choix d'une fréquence proche de 2914 cm⁻¹ aurait produit un décalage de l'ordre de 18%). La plausibilité de notre proposition est encore renforcée par l'amélioration de la corrélation entre les groupes $C(2)H_2$ et $C(2)D_2$. Pour $v_sC(2)H_2$ nous observons une fréquence nettement plus élevée que celle correspondant à une chaîne de CH_2 (cf. fig. 4).

L'étude des groupes $C(3)H_2$ se confond avec celle des chaînes de CH_2 dans les *n*-alcanes, dans la mesure où les intensités des groupes $C(2)H_2$ deviennent négligeables. Pour un groupe isolé, la règle de la moyenne peut nous permettre d'évaluer les couplages subis par ce groupe. Dans le cas de chaînes ou portions de chaînes de configuration zig-zag plane, les couplages entre oscillateurs de groupes voisins sont mis en évidence par l'observation de vibration déphasées et en phase, en infrarouge et en *Raman* [18]. Nous ne disposons pas d'un groupe $C(3)H_2$ isolé mais de deux groupes voisins dans le D_4 -2,5-hexane. D'autre part la série des *n*-alcanes D_6 -1, ω nous permet d'étudier des chaînes de CH₂ de différentes longueurs.

Pour les vibrations déphasées [2], v_a est observée en infrarouge à 2917 cm⁻¹ dans le spectre du D_4 -2,5-hexane et à 2926 cm⁻¹ dans la série des *n*-alcanes D_6 -1, ω . Nous observons une augmentation de la fréquence de la vibration correspondant à un déphasage maximum avec l'allongement de la chaîne. La fréquence de v_a CH₂ du D_6 -1,5-pentane, 2926 cm⁻¹, s'explique par l'importance relative des C(2)H₂. Nous pouvons donc admettre qu'inversement v_a C(3)H₂, pour un groupe isolé, a une fréquence de l'ordre de 2910 cm⁻¹.

De la même façon qu'en infrarouge on observe une augmentation de la fréquence, on observe en *Raman* une diminution de la fréquence de la vibration, correspondant à un déphasage minimum avec l'allongement de la chaîne [19]. Cette fréquence peut être évaluée à environ 2890 cm⁻¹ pour une chaîne, puisque des fréquences voisines sont observées dans les spectres du D₆-1, 12-dodécane³) [18] et du polyéthylène [20]. On observe donc une augmentation des couplages entre les groupes CH₂ avec l'allongement de la chaîne et un plafond, rapidement atteint, d'environ 30 cm⁻¹.

La vibration de valence symétrique du D_4 -2,5-hexane est observée à 2854 cm⁻¹, et celle du D_6 -1,10-décane, à 2857 cm⁻¹ (la même fréquence est mesurée pour le D_6 -1,12-dodécane et est confirmée par [21]). Nous notons donc en infrarouge le même effet que pour ν_a avec toutefois une amplitude plus faible. On relève pour la vibration en phase du D_6 -1,12-dodécane la fréquence de 2851 cm⁻¹ [18].

4.3. Modèle expérimental. Ce modèle propose un regroupement des attributions des vibrations de valence des groupes CH_2/CD_2 et CH_3/CD_3 , correspondant aux spectres des solutions dans CCl_4 (cf. fig. 3 et 4). Son caractère systématique a permis de faire des hypothèses dont la vérification a confirmé des attributions douteuses. Tout en conservant l'avantage des modèles de groupe, notre modèle introduit des perturbations qui permettent de mieux approcher les faits expérimentaux. Il met en évidence, d'une part, différents types de couplages et, d'autre part, les effets isotopiques sur les fréquences des vibrations de chaque groupe. Le modèle représente une méthode d'attribution d'autant plus intéressante qu'elle inclut la règle de la moyenne, les ordres de grandeur des couplages et les effets isotopiques, en plus de l'aspect systématique déjà souligné. C'est pourquoi, nous avons procédé de la même manière pour le bromure de *t*-butyle-D₆-1,3 (cf. 3.3.). Nous proposons donc pour ses groupes CH_3/CD_3 un modèle analogue, dérivé de celui des alcanes (cf. fig.2).

Des couplages de plusieurs types apparaissent dans le modèle. Les couplages internes mettent en jeu les oscillateurs d'un groupe seulement, ils produisent la séparation des fréquences des vibrations de valence d'un groupe CH_2 , par exemple, en v_a et

³) Cependant la bande observée n'est pas attribuée à $v_a CH_2$ par les auteurs.

 $\nu_{\rm s}$. Les couplages externes relient les oscillateurs d'un groupe à des oscillateurs extérieurs au groupe. Leur effet sur un groupe déterminé est perceptible grâce à la règle de la moyenne. Dans le cas d'une chaîne, ils mettent en jeu des oscillateurs C-H/C-D de différents groupes, et leurs effets sont dispersés le long de la chaîne. Ils se manifestent alors par l'observation des fréquences limites des vibrations déphasées et en phase. Comme la théorie le prévoit, on observe des couplages internes nettement plus forts dans les groupes deutériés. Les groupes $\rm CH_3/CD_3$ sont beaucoup moins couplés avec les groupes voisins que les groupes $\rm CH_2/CD_2$ puisqu'aucun couplage externe n'est observable. Ces derniers groupes par contre présentent des couplages externes non négligeables qui peuvent atteindre 10 cm⁻¹, dans le D₂-3-hexane par exemple. Les couplages entre les groupes d'une chaîne de méthylène sont, quant à eux, de l'ordre de 30 cm⁻¹.

Les effets isotopiques sont calculés à partir des rapports des fréquences indiquées sur les diagrammes (cf. fig. 2, 3 et 4). Ils peuvent fluctuer autour de ces valeurs pour certains groupes, selon les molécules utilisées pour leur calcul. La cohérence à l'intérieur du modèle est bonne, ainsi que la concordance avec les effets habituellement observés, dans la mesure où aucune correction d'anharmonicité n'a été effectuée. En effet, ils sont toujours inférieurs, de 1 à 1,5%, à ceux calculés par *Krim* pour des fréquences harmoniques [16]. Or les anharmonicités des oscillateurs C-H et C-D rapportées à leurs fréquences de vibration respectives diffèrent bien de l'ordre de 1%, ce qui augmente d'autant les effets isotopiques. Le même auteur note d'ailleurs une déviation moyenne de 1,2% dans le cas d'utilisations des fréquences fondamentales dans ses calculs [19]. Les incertitudes sur les effets isotopiques sont de \pm 0,002 avec des fréquences mesurées à ± 2 cm⁻¹, ce qui correspond à un cas défavorable.

4.4. Conclusion. Ce schéma simple, dans lequel entrent les fréquences des vibrations de valence C-H/C-D, permet de proposer et de contrôler des attributions, de prévoir les spectres des groupes étudiés. C'est pourquoi, en plus des alcanes deutériés utilisés dans le modèle, nous avons étudié un grand nombre d'autres alcanes, dont quelques hexanes rapportés dans le tableau 4. L'accord entre les prévisions du modèle et leurs spectres est très bon, compte tenu des nombreuses superpositions de bandes impliquées par la présence simultanée de certains groupes. Quelques points restent cependant peu clairs; en particulier des perturbations compliquent très souvent les spectres sans qu'il soit toujours possible d'en trouver l'origine, comme c'est le cas pour quelques groupes CH_a et CD_a .

Il ressort de ce qui précède et de la comparaison avec les fréquences normales de la littérature [2] [8] [9] [11] [22] que le concept de groupe permet une meilleure description des vibrations de valence C-H/C-D. En effet, aussi bien les couplages, internes ou externes, que les perturbations provenant de résonances avec des harmoniques ou combinaisons, sont relativement plus simples à introduire dans ce type de modèle que dans un modèle de vibrations normales. Le prolongement naturel de ce travail consistera à étudier l'anharmonicité des vibrations de valence C-H/C-D. Plus précisément, il s'agira de déterminer jusqu'à quel point un modèle de groupe peut rendre compte de l'anharmonicité de ces vibrations [23].

Nous remercions sincèrement le Fonds National de l'aide accordée pour ce travail.

BIBLIOGRAPHIE

- [1] J. J. Fox & A. E. Martin, Proc. Roy. Soc. A 175, 208 (1940); T. Simanouti & S. Mizushima, J. chem. Physics 17, 1102 (1949); J. K. Brown, N. Sheppard & D. M. Simpson, Discuss. Faraday Soc. 9, 261 (1950); idem, Trans. Roy. Soc. A 247, 35 (1954).
- [2] R.G. Snyder & J.H. Schachtschneider, Spectrochim. Acta 19, 85, 117 (1963).
- [3] E.K. Plyler, A. Danti, L. R. Blaine & E.D. Tidwell, J. Res. Natl. Bureau Standards A 64, no 1 (1960).
- [4] L. J. Bellamy, «The IR. Spectra of Complex Molecules», Methuen, London 1964; C. N. R. Rao, «Chemical Applications of IR. Spectroscopy», Academic Press, London 1963; H.A. Szymanski, «IR. Theory and Practice of IR. Spectroscopy», Plenum Press, New York 1964; N. B. Colthup, L. H. Daly & S. E. Wiberley, «Introduction to IR. and Raman Spectroscopy», Academic Press, London 1964.
- [5] M. T. Forel, Thèse, Bordeaux 1962.
- [6] F. Winther & D.O. Hummel, Spectrochim. Acta 25 A, 417, 425 (1969).
- [7] B. Nolin & R. N. Jones, J. Amer. chem. Soc. 75, 5626 (1953); J. P. Perchard, M. T. Forel & M.L. Josien, J. Chimie physique 61, 632-667 (1964); J. C. Evans & H. J. Bernstein, Canad. J. Chemistry 34, 1037 (1956); R. Van Riet, Bull. Classe Sci. Acad. roy. Belg. 41, 188 (1955); R. N. Jones & B. Nolin, Canad. J. Chemistry 34, 1392 (1956); H. L. McMurry & V. Thornton, J. chem. Physics 19, 1014 (1951); C. M. Pathak & W.H. Fletcher, J. mol. Spectroscopy 31, 32 (1969); P. C. Lysne & A.G. Meister, J. chem. Physics 48, 918 (1968); J. P. Perchard & M. L. Josien, J. Chimie physique 65, 1834 (1968); J. P. Perchard, Spectrochim. Acta 26A, 707 (1970); M. T. Forel & M. Fouassier, ibid. 24 A, 311 (1968); P. Mirone, B. Fortunato & P. Canziani, J. mol. Structure 5, 283 (1970); M. T. Forel & M. Tranquille, Spectrochim. Acta 26A, 1023 (1970); P. Klaboe, Spectrochimica Acta 26A, 977 (1970).
- [8] G. Dellepiane & J. Overend, Spectrochim. Acta 22, 593 (1966).
- [9] J.C. Evans & G. Y.-S. Lo, J. Amer. chem. Soc. 88, 2118 (1966).
- [10] E. R. Shull, T. S. Oakwood & D. H. Rank, J. chem. Physics 21, 2024 (1953).
- [11] K. Shimizu, H. Murata, Bull. chem. Soc. Japan 30, 487 (1957).
- [12] C.W. Young, J.S. Koehler & D.S. McKinney, J. Amer. chem. Soc. 69, 1410 (1947).
- [13] D. N. Waters & L. A. Woodward, Proc. Roy. Soc. A 246, 119 (1958).
- [14] S.C.Graham, Spectrochim. Acta 26 A, 345 (1970).
- [15] D. H. Rank, B. D. Saksena & E. R. Shull, Discuss. Faraday Soc. 9, 187 (1950).
- [16] S. Krimm, J. chem. Physics 32, 1780 (1960).
- [17] W. J. Lehmann, J. mol. Spectroscopy 7, 1, 261 (1961).
- [18] R.N. Jones & R.A. Ripley, Canad. J. Chemistry 42, 305 (1964).
- [19] S. Krimm, Fortschr. Hochpolym. Forsch. 2, 51 (1960).
- [20] J. R. Nielsen & A. H. Woolett, J. chem. Physics 26, 1391 (1957).
- [21] R.N. Jones, Canad. J. Chemistry 40, 301 (1962).
- [22] P.Labarbe, M. T. Forel & G. Bessis, Spectrochim. Acta 24 A, 2165 (1968); S.Lifson & A. Warshel, J. chem. Physics 49, 5116 (1968); B. Stepanov, Acta physicochim. URSS 22, 238 (1947).
- [23] T.Gäumann, Ho Dac Thang & M. Avanessoff, Helv. 54, 1013 (1971); T.Gäumann & M. Avanessoff, Helv. (à paraître).